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Abstract

Socioeconomically disadvantaged populations are often disproportionately sub-
jected to over policing. While sometimes well intended, other times over policing
is due to a belief that a response to crime must be swift in order to deter possible
repeat actors. However, crime inspired by the action of another criminal is not the
only reason why these events may be clustered in space and time. A competing the-
ory states that spatio-temporal clustering occurs due to underlying socio-economic
conditions rather than inspired actors. In quantitative criminology, repeat victim-
ization attributed to copy-cat actors is often modeled through the use of a self-
exciting, or Hawkes, process. This process is often assumed to exist prior to data
analysis and alternative processes are rarely considered. In this manuscript, we will
discuss how model selection, in particular model selection between a log Gaussian
Cox process and a Hawkes process, is both a necessary as well as difficult step in
statistical modeling of crime. We will provide a few techniques to conduct model
selection between these processes and conclude, with a warning for researchers in
this area, that sometimes these processes cannot be disentangled. In these instances,
we suggest that modelers explicitly mention that their models rely on one theory of
repeat victimization and that alternative theories may exist that lead to other forms
of policing and may impact their interpretation of the root cause of why crime is
spreading in space and time.
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1 Introduction

A long standing assumption in criminology is that crime can spread via a contagion-
like process [1, 2]. Within the criminology literature, researchers describe this con-
tagion-like process as arising from either flagged events or boosted offenses [3, 4].
Flagged events, or state heterogeneity, claims that targets appear to criminals as more
attractive due to features of the particular location and are victimized due to these fea-
tures. Boosted events, on the other hand, suggests that offenders learn which targets
are easily victimized through the acts of other criminals and it is the occurrence of a
previous event that boosts the probability that a new event will occur. Perpetrators of
a crime, in this instance, are copying the actions of other individuals.

The boosted events theory is associated with prevention strategies such as quick
responses to known areas of violence [5, 6]. Other responses to repeat victimization
driven by a boosted event are quickly removing signs of property damage, removing
or protecting targets, or short term regulating or controlling access [7]. Each of these
response strategies involve an external police force acting quickly with a visible pres-
ence in the area of the crime.

Flagged event theory, on the other hand, suggests policing strategies that focus
on addressing the underlying causes for the contagion. Here repeat victimization
could be controlled for by hardening targets, or removing socio-economic conditions
that exist in a given region. Clearly the responses to boosted events appear to be
much more heavy handed and may negatively impact potentially vulnerable popula-
tions. Most concerning would be the misidentification of the root cause resulting in
a response for a boosted event whereas the actual cause of the repeat victimization
was a flagged event.

Regardless of the underlying cause, we can expect that the spatio-temporal pat-
tern of data from a contagion-like process would appear to be clustered. However,
modeling clustered data is not entirely straightforward. In fact, multiple processes
can generate similar spatio-temporal cluster patterns [8]. In general, these models
can be broadly classified as observation-driven models or parameter-driven mod-
els [9, 10]. Recently, observation-driven models, or Hawkes processes have become
increasingly common to use in the modeling of criminal behavior [11-15]. However,
as we will argue in this manuscript, using observation-driven models presupposes
that crime spreads via the boosted theory of contagion. Assuming that crime spreads
via flagged events would, in fact, assume a different generative process. Here we will
argue that the natural process to generate data from the flagged theory would be more
akin to a log Gaussian Cox process [16]. Critically, by picking the wrong underlying
process, conclusions could be drawn that would negatively impact vulnerable popu-
lations. Specifically, as the response to boosted events is typically a heavy handed
police response, misidentifying the models may result in overpolicing rather than
addressing underlying reasons that some targets are more attractive than others.

In this manuscript we will discuss the basics of modeling spatio-temporal cluster
processes focusing on Hawkes processes and log Gaussian Cox processes. We will
then connect the processes to common theories in criminology and discuss how the
proper theoretical underpinning is a social justice issue. We will close with a discus-
sion on the difficulties in differentiating between the two processes and demonstrate
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how failure to disentangle the processes results in incorrect conclusions regarding the
diffusion of crime in space-time and hence incorrect conclusions regarding proper
police responses.

2 Spatio-temporal Clustering Point Processes

A spatio-temporal point process is defined on a bounded subset, say B; + of R? x R.
For any subset A € B, ; which is Lebesgue measurable we allow Z(4) to denote the
number of events in A. For completeness we assume Z(4) is almost surely finite, then
here {Z(A) : A € B, .} characterizes a point process (see e.g., p.205 of [17]).

In this manuscript we will consider Poisson point processes which extend straight-
forwardly through assuming Z(A) ~ Po()\°|A|) where Po(-) denotes a Poisson dis-
tribution and |A4| is the three dimensional space-time volume under consideration.
The stipulation above assumes a constant background intensity A\° which is often not
realistic and can be relaxed through allowing a space-time varying background rate
A(s,t). This assumes the intensity varies at location s € R? and ¢ € R. Typically, we
place an upper bound on the time, say T, so we can modify this as ¢ € [0, 7. In the
case of a varying background rate we have Z(A) ~ Po ([, (s, t)dsdt).

Spatio-temporal point processes are uniquely characterized by their conditional
intensity [18] where the conditioning occurs conditional on the past, or conditional on
the temporal component of the model. While a log likelihood function can be easily
written out for a general spatio-temporal point process, inference is more difficult and
sometimes relies on techniques such as minimum contrast estimation which essen-
tially uses point estimates for higher order moments to functions of parameters mini-
mizing the squared loss over a user specified range (for more see [19]). Alternative
techniques for fitting spatio-temporal point processes are to create spatio-temporal
grids and count the number of observations that occur in each grid. The process, then,
can be represented through a vector, say Z; = (Z(s1,t), Z(s2,t),...,Z(sn,t)). The
collection of vectors, {Z1, ..., Zr} then can be modeled using a parametric method.
While this simplifies the calculations considerably, the choice of how to grid out the
spatio-temporal field is arbitrary and different choices of grid structure may impact
the results. In spatial statistics, this is referred as the modified areal unit problem
(MAUP) [20]. However, some recent work in [21] suggests techniques for ensuring
the grid choices does not significantly impact the analysis.

In this manuscript we will consider two spatio-temporal point processes that have
been used in the analysis of crime and violence. In particular, we will discuss the
underlying assumptions and model formulation for both the Hawkes process as well
as the log Gaussian Cox process.

2.1 Hawkes Processes
Hawkes processes, proposed in [22], fall into the category of observation-driven

processes of [10]. Hawkes processes are also a type of cluster process that directly
model the clustering behavior through parent processes which are drawn from a
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background rate and offspring events centered on the parent. However, unlike other
observation-driven cluster processes such as Neyman-Scott processes or Matérn pro-
cesses, Hawkes processes allow for offspring to generate additional offspring. These
processes are also referred to as self-exciting processes. While initially formulated as
temporal processes, they have recently been extended to spatio-temporal processes.
For an overview of recent developments see [13].

To define a Hawkes process, we use the conditional intensity, conditioning on the
history of the process up to point z, denoted as H;. The conditional intensity, then, is
denoted as A(s, t|H;). The spatio-temporal Hawkes process has conditional intensity
of the form

A(s,t[He) = v(s,t) + Y gls —sit — ;). )

it <t

From here, we see that the parents are generated according to (s, t) and the offspring
are generated according to the triggering kernel g(., .). To simplify this, typically
assumptions are made such as the background rate being constant in time and the
triggering kernel to be separable in space-time, yielding

As,t[He) =v(s)+ > fi(s — si) falt — t;). )

it <t

Quite often f; is assumed to be Gaussian and f5 is exponential, giving

A(s, t|He) = v(s) + Z #exp (—(t—t;)/0) exp (_HS_S‘H) - (3)

) 202
i<t

An important parameter in (3) is 6 which controls the expected number of offspring
for a given point. This parameter, sometimes referred to as the self-excitation param-
eter, determines whether a system decays or grows exponentially. The parameter ¢
impacts the temporal decay and o2 controls the spatial decay for each triggering
event. A larger ¢ and larger 02 would allow an event to impact a wider temporal and
spatial region.

An example of a spatio-temporal Hawkes process with a constant background
rate that has been margninalized over time is shown in Fig. 1. Here we can see sub-
stantial spatial clustering, however there are some parent events that never generate
offspring. The process is ‘self-exciting’ in the extent that other clusters have multiple
offspring that generate their own offspring as in a branching process.

Hawkes processes have had extensive use in seismology starting with [23], though
with a different kernel created through the knowledge of how earthquakes propagate
to aftershocks. Along with modeling crime, these processes have also been used to
model financial transactions [24], social media [25], disease transmission [26], how
protest activities spread across a country [27], and terrorism [28].

While the majority of these are driven by theoretical conceptualizations of the
model, such as an initial social media post (parent process) followed by subsequent
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Spatio—Temporal Hawkes Process
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Fig. 1 Spatio-temporal Hawkes process with a constant background rate, an exponential kernel in time
and a Gaussian kernel in space

re-posts (offspring process) as in [25], other times the process is more descriptive
as in the case of epidemiological models where diseases must have a parent case at
some level.

2.2 Log Gaussian Cox Processes

An alternative approach would be to use what [10] would refer to as a parameter-
driven model. One common parameter-driven model that is used to model spatio-
temporal point process data is a log Gaussian Cox process (LGCP). LGCPs can be
viewed as latent Gaussian processes where the expectation of the Gaussian process
represents both spatio-temporally varying observed covariates as well as unob-
served variation. Initially developed as spatial models, they have been subsequently
extended to spatio-temporal point process data, see e.g., [29]. LGCPs assume that the
spatio-temporal correlation between regions in R? is driven through exogeneous fac-
tors and can be expressed through both large-scale (observed) factors and small-scale
(unobserved) variation.

To define an LGCP we need to define the structure of the observed factors as well
as the structure of the unobserved factors. To do this, we assume that the log of the
intensity is a Gaussian process, say Y(s, f) with expectation z(s, ¢) and covariance
function C'({s;,t;},{s;,t;}). The covariance function must be positive-definite in
order to ensure that a valid joint distribution exists.

The complicated nature of expressing an LGCP belies the straightforward
assumptions that underlie the process. That is, if we consider any two spatio-
temporal locations, say (si,¢1) and (s2,t2), an LGCP assumes that the intensity
of each location is driven by a log Gaussian process, A(s1,t1) = exp(Y(s1,11))
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and  A(s2,t2) = exp(Y(sa,t2)). Where E[Y(s1,t1)] = z(s1,t1)’8 and
E[Y(Sg, tg)] = $(52, tg)lﬁ with Cov (Y(Sl, tl), Y(Sz, tg)) = C((Sl, tl), (52, tg)).

This formulation is familiar to practitioners who are used to using generalized linear
mixed models. Typically C(., .) is chosen to reflect higher correlation between spatially
and/or temporally adjacent locations. Sometimes this is further simplified to assume
separability in space and time, that is C({s;,t;},{s;,t;}) = Ci(si,5;)Ca(t1,t2)
though this is not strictly necessary, see e.g., [30].

As discussed in [29], LGCP are typically used for point process phenomena that
are driven through environmental factors rather than through the interaction between
observations. Recent uses along these lines have been in modeling disease outbreaks
with known socio-economic risk factors [31] and the modeling of pollution [32].
LGCPs have also been used to justify models of criminal behavior in [33-35] and
others.

In Fig. 2 we can see clear clustering in space after we marginalize over time that
is not obviously different than the clustering provided in Fig. 1. However, unlike the
Hawkes processes, there are no parent/child events to differentiate. Of note, both
Fig. 2 and Fig. 1 assume a constant expectation. Therefore, any clustering observed
in Fig. 2 is due to the C(+, -) function which captures spatio-temporal clustering not
accounted for by covariates in the model and any clustering observed in Fig. 1 is due
to self-excitation in the g(-, -) function of Eq. (1).

2.3 Connections with Criminology Theories

Each of the processes described above have direct correlations with existing theories
of criminal activity. Specifically, the Hawkes process relates to the boosted events

Spatio—Temporal Log Gaussian Cox Process

B )
100 ‘et @ ] T T
14 ° ‘ o ‘@ o
. ® o o o® -
- . . . © K .
g Id . ofe o '
) & e e ©o
o o ‘ . ¢ o ° .
0.75 e lep oo ° <
. . 7] S
' . o st
o % L ] * ° .
N o w o°% . ¢,
te LK S ale s b
> 050 o L hLS e
) . LY °
e . o o9 » ¢ ®
. e o .
) ® o o ® ® S e
. e ~ . .
oo
0.25 T ‘. ® o o f . H < °
L ® e’ o o - W’
d o el * . . o | ® ®
s %° ..Q .o’ *
° ‘s I . - * e e «
oo % . . L 4 oo
0.00 . . i . oo e &
0.00 0.25 0.50 0.75 1.00

Fig. 2 A log Gaussian Cox process with constant expectation
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theory whereas the LGCP relates to the flagged events theory. An early example of
using these theories to motivate a statistical model was in [12] where the authors jus-
tified a Hawkes process through modeling near-repeat victimization and the broken
windows effect which allowed the intensity to spread spatially from each house to its
neighbors. Here the authors started with a discrete spatio-temporal model

)\(Si,t) = ()\(Si,t — 1) + gAA(S“t - 1)) (1 - w) + GY(S“t - 1) (4)

A discrete spatio-temporal model, similar to a lattice model in spatial statistics, aggre-
gates counts over a set of spatio-temporal regions. That is (s;,t) indexes a unique
geographic location region at a unique point in time. In Equation (4) the authors allow
for a lagged intensity as well as repeat victimization through 6. In (4) A is a discrete
spatial Laplacian operator, essentially looking at the difference between the intensity
at s; and the intensity at all spatially adjacent neighbors. While the authors here use
an agent-based-model to generate a partial-differential-equation based model, we can
slightly modify this to arrive at a discrete version of a Hawkes process.

If we first assume that A\(s;,0) = 0 and ignore the spatial spread by setting n = 0
in (4), we can arrive at:

Asint) =v+ > (1—w) 7710V (s;,t — j). )

j<t

This is a discretization of a temporal Hawkes process with an exponential kernel for
the temporal decay. That is, with a kernel of ae®(*=*) To see this, consider three
events that occur at times ¢t = 0.5,0.7,0.9 if time has been discretized; then, each
of these events have the same contribution to excitation at time ¢ = 1. Here they
would each contribute ce™?. Therefore the entire excitation would be 3ce™?. Let-
ting # = ae? we arrive at (5). While this model assumes a constant background
rate, further modifications of the Hawkes process have been made to account for
belief that differing spatial locations may have differing dynamics. In [36] the authors
modified the Hawkes process as

Als, tiHe) = exp (BX(s)) + D fils = si)fa(t = 1), ©)

it <t

where in (6) X(s) are spatially varying covariates unique to cell s. In [37] the authors
considered a similar model with exp (5X (s) + ~) where v was a spatially structured
error term attempting to capture both measured as well as unmeasured spatial struc-
ture in the background rate. An alternative approach was proposed in [11], where
A(si,t) in (5) was multiplied by exp (8X).

However, each of these assumes that there exists a repeat victimization term driven
through the boosted theory of criminology and while the structures in, say [37] and
[36] may appear to be very similar, parameter estimates may vary widely when the
structure of the models change slightly as demonstrated in [37].
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If, instead, we assume a flagged event theory, the process that generates spatio-
temporal clustering should be driven by external factors that can be captured as either
measured covariates in the model or as a spatially varying component. In [38] these
are helpfully referred to as large-scale variation, or structure in the mean compo-
nent, and small-scale variation, or stochastic-dependence structure. For example,
E[Y (s;,t)] from the LGCP would capture the large-scale variation and C(., .) would
capture the small-scale variation.

Examples of this appear in [39] where the authors assume a generalized additive
model structure for the large-scale variation and an independent term for the small-
scale structure. In [40] the authors justified their mean structure through environmen-
tal factors and further captured small-scale variation through a separable space-time
covariance matrix similar to those described in Section 2.2.

3 Identifiability Issues

As the differing underlying processes relate to different theories in criminology, it
would seem that differentiating between the two would be an important step in ana-
lyzing the cause of crimes. However, there exist identifiability issues when we look
at the two processes. By identifiability we mean: given a set of data can we determine
the generating statistical model? Or, in other words, can multiple models generate
similar data patterns such that the data patterns are so similar that they cannot be
differentiated. As an example we see in Fig. 2 and 1 both of these processes are able
to generate substantial spatial clustering. While much has been done in literature on
creating spatio-temporal point processes, only limited work appears to be done in
model selection.

One of the issues is that while the distribution of an LGCP is completely deter-
mined by E[Y (s;,t)] and C(-,-) [16], this is only true if we already know that the
underlying process is an LGCP. That is, if we know the first and second-order-
moments of the distribution can uniquely identify the generating model, it is then
when we have restricted the model classes to only being LGCP.

As LGCPs are characterized by their first two moments, it is potentially useful to
examine statistics relating to the second moment. One of the most common second-
order-measures for point process data is Ripley’s K-function [41]. In broad terms,
Ripley’s K-function measures the extra events (above that which could be generated
by spatial randomness) within a distance / of an arbitrary event. Non-parametric esti-
mators of the K-function are given on pages 210-213 of [17] which can be extended to
spatio-temporal data in the obvious way by defining the neighborhood in R? instead
of R?. Essentially, the K-function captures the amount of spatial or spatio-temporal
clustering in the data. Given an empirically generated K-function, parameters for an
LGCP can be estimated through minimizing a distance between the empirical func-
tion and a theoretical function, as in Section 10.1 of [19].

Unfortunately, if we don’t know the class of model in the first place, the first and
second-order-moments do not uniquely define a process [42]. In [29] the authors
demonstrate how LGCP and Thomas processes (a Hawkes process that does not
allow for offspring to generate new offspring) can share the same second-order-prop-
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erties. Therefore, first and second-order-processes such as K-functions [41] cannot be
used to differentiate between some processes. This was further studied in [43] where
the authors found that spatio-temporal LGCP and Hawkes processes could generate
similar second-order-processes.

Outside of examining summary statistics such as Ripley’s K-function and compar-
ing them to reference distributions, alternative model selection techniques generally
rely on calculating a penalized likelihood, considering nested models, or restrict-
ing the class of models to the same functional form, see e.g., [44]. Each of these
techniques, however, are not able to meaningfully differentiate between LGCP and
Hawkes processes.

One of the most common methods is computing a penalized version of a likeli-
hood function. Typically these are methods like Akaike’s information criterion (AIC)
or Bayesian information criterion (BIC). Both of these techniques rely on being able
to compute a likelihood from the data. The difficulty for computing a likelihood for
an LGCP is that the density function involves an unobserved latent spatio-temporal
random error term. Therefore, in order to compute a likelihood, the latent spatio-
temporal error term would need to be integrated out, this is generally a high dimen-
sional integral that is approximated. Therefore the likelihood computed is not a true
likelihood. Hawkes processes, on the other hand, do have a tractable likelihood that
can be maximized, however without a true likelihood from an LGCP any comparison
of AIC or BIC between the two processes would not be valid. Alternatively, statisti-
cal models often rely on examining nested models and computing a statistical test.
Nested models are statistical models where the parameters of one model are a subset
of the parameters of the second. However, clearly the structure of the two processes
is not nested, in this case. This further limits the ability of the modeler to rely on vari-
able selection methods to differentiate the models as well.

While it is not straightforward to differentiate between Hawkes and LGCP when
modeling the spatio-temporal spread of violence, failure to do so may attribute
flagged events to boosted events or vice versa. The policy conclusions, then, may
be to increase police presence as to combat a boosted event whereas the correct pol-
icy might be to address the underlying socio-economic risk factors as in a flagged
event. Further, it is possible that events within a close proximity are both flagged and
boosted which may further complicate matters. Regardless, the misidentification of
underlying processes is much more apt to impact lower income regions.

3.1 Some Potential Ways Out

Here we discuss some possible techniques for differentiating between the two pro-
cesses that do not rely on typical second-order analysis or methods outlined above.
However, arguably none of these are a single answer that researchers can currently
rely on using in all cases. While some of them rely on using higher-order statistics,
beyond second-order, this offers a possibility in using machine learning methods that,
again, rely on the automatic selection of higher-order features that may not be as
immediately obvious as the second-order-processes discussed above. Other methods
involve creating novel point process models that combine the multiple theories into
a single framework.
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In [37] the authors used statistics such as variance-to-mean ratio, the maximum
observed count in a given cell, spatial correlation, and temporal correlation to differ-
entiate between two competing models. This technique relied on posterior predictive
checks [45]. Posterior predictive checks, typically done in a Bayesian framework,
involve picking key characteristics from the data, fitting a model to the data, simulat-
ing from the fitted model, and then comparing the key characteristic calculated from
the data to the key characteristic calculated from the simulated model. The researcher
then finds the proportion of simulations that have a higher value than the actual data.
This is sometimes referred to as a posterior predictive P-value, and both high or low
values of the posterior predictive P-value would indicate that the model was not
compatible with the data.

While the posterior predictive checks offer a way to use non-conventional statis-
tics, they still rely on the analyst to know, a-priori, which statistics would be appro-
priate to use. An alternative method, presented in [46] relies on using convolutional
neural networks to automatically extract key features from spatial point processes
that are then used to differentiate between two, or more, competing models.

Convolutional neural networks (CNNs) potentially may be used by gridding out
the spatio-temporal region. The number of points, then, can be counted in each region
yielding a vector of length s; X so X t where s1 X s5 are the length of each spatial
grid and ¢ is the length of each temporal grid. The vector, then, is passed through a
convolutional neural network (for more on CNNs see [47]). The CNN, then, classi-
fies the vector as either coming from, say, the Hawkes process or the LGCP. CNNs
appear to have first been used to differentiate spatial point patterns in [46] where the
authors demonstrated that these algorithms could disentangle some common spatial
patterns.

While these techniques have started to be used in the spatial literature, there do not
appear to be many uses, so far, in the spatio-temporal cases. One potential way to use
CNNs would be to simulate from, say, a Hawkes process then fit the data to a LGCP.
The fitted models then should share similar statistical characteristics. This could be
done a number of times to generate a training set of LGCPs and Hawkes processes
that can then be combined and fed through a CNN. Pseudo-code for this is given in
Algorithm 1.

Algorithm 1 Simulation and evaluation of spatio-temporal Hawkes and log Gaussian Cox processes

1: Set parameters for the spatio-temporal Hawkes process.

2: for i =1 to 50 do

3 Simulate data from the spatio-temporal Hawkes process using parameters.

4 Aggregate data into a spatio-temporal grid.

5: Fit the aggregated data to a log Gaussian Cox process.

6 Simulate data from the log Gaussian Cox process.

7. end for

8: Combine the 50 sets of Hawkes process data and 50 sets of log Gaussian Cox
process data.

9: Fit the combined data to a convolutional neural network.

10: Evaluate the ability of the network to discriminate between the two processes.

@ Springer



La Matematica (2026) 5:10 Page 11 of 20 10

The main benefit of using a CNN is that it does not require the practitioner to
a-prior select the key features that differentiate processes from each other. Rather,
the algorithm selects the features based on their ability to discriminate between the
multiple processes under consideration. While these techniques are promising, much
more work needs to be done on assessing the classification ability of various architec-
tures and automating the process to make these methods practical for use by analysts
and criminologists. As shown in [46] there are many instances that even the CNN
fails to fully disentangle two similar processes. It remains unclear whether this is due
to the underlying architecture or whether the processes just cannot be differentiated.

An alternative technique that, while seemingly logical, may be indeed be problem-
atic is to build statistical models that combine the two processes. An early example
of this is in [48] where the author considered a temporal point process model that
additively combined the expectation from a log Gaussian Cox process with that of a
Hawkes process. This was extended to a spatio-temporal case in [37], however with
a simplified Hawkes process involving a point-mass kernel. This was more gener-
ally presented in the spatio-temporal case in [15] for the discrete case and [49] in the
continuous case.

While these models are logical on the surface, there are some subtle issues with
parameter interpretation that do not appear to be fully realized. As shown in [15] the
choice of covariance function in the log Gaussian Cox process impacts parameters
associated with the Hawkes process and vice-versa. This would mean that a conclu-
sion about whether repeat-victimization is present in the data may be biased through
the choice of what spatial covariates are included in the statistical model. While this
may seem counter-intuitive, it is important to note, and to mention in any analysis,
that the parameter estimates are conditional on all other terms in the model. That is,
when we allow a Hawkes process to exist alongside a log Gaussian Cox process in
a model, the parameter estimates from the LGCP portion can only be interpreted as
conditional given the presence of the Hawkes process. Therefore, by hoping to dis-
entangle the processes we have, in fact, more closely tied them together by no longer
being able to cleanly interpret the meaning of any parameters in the model.

Perhaps the most logical path forward currently is to ensure that any analysis done
using criminal data is explicit in the assumptions that are built into the model. For
instance, when using a Hawkes process analysts need to ensure they explicitly state
that they are assuming repeat victimization brought about through boosted events
theory. In these instances, it is imperative that researchers also consider compet-
ing hypotheses and fit multiple models to show the sensitivity of any finding prior
to making conclusions about why violence or crime is spreading. At a minimum,
quantitative criminologists should consider log Gaussian Cox processes alongside
Hawkes processes when building out inferential models for crime.

4 Example
In this section we illustrate how differing processes, which can both be justified by

the data, if we only rely on summary statistics, can generate differing conclusions on
the spread of violence. In particular, we will look at homicides in the city of Chicago
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in 2015 that is available from the R library ‘crimedata’ [50]. All results may be rep-
licated by following the R Code available at https://github.com/nick3703/SocialJust
iceCrime/tree/main.

The data, marginalized over space, is shown in Fig. 3. Here we’ve rotated the grid
and standardized the longitude and latitude data.

From Fig. 3 we see some evidence of spatial clustering. This can be further ana-
lyzed by calculating Ripley’s K-function and comparing it to a homogeneous Poisson
process which denotes complete spatial randomness. This is depicted in Fig. 4. Here
we see that there is substantially more spatial clustering than would be expected if
there were complete spatial randomness.

To examine the temporal pattern we aggregated the number of events over each
week and plotted a smoothed rolling 3 week window of events and also computed the
autocorrelation function for the aggregated data, as shown in Fig. 5. From here we do
see an upward trend in summer months and a slight autocorrelation in the data. While
this could be captured in large scale covariates in the model, for example by using
temperature or another proxy measure as a covariate, here we leave this as part of the
excitement or small-scale (unexplained) variation in the model

Prior to considering a spatio-temporal model, we first look at potential models
for the data marginalized over time. We consider a spatial only LGCP and a Hawkes
process with only a spatial spread. Specifically in (2) we let the kernels fo(-) = 1 and
f1(-) = Kljs—s,||<5)|- A Hawkes process with these kernels is also called a Matérn
cluster process [19]. The Matérn cluster process is a spatial only parent child process
where the patterns are distributed according to a homogeneous Poisson process and
the children are uniformly clustered around the parent.

Homicide Locations in Chicago (2015)
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Fig. 3 Homicide locations in Chicago in 2015 placed on a regular grid
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Fig. 4 Border corrected Ripley’s K-function compared to theoretic K-function from a homogeneous
Poisson process
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Fig. 5 Three week rolling average and an ACF plot of the weekly aggregated number of homicides in
Chicago in 2015. Dashed lines from ACF plot represent approximate 95% confidence intervals

To demonstrate the difficulty in model selection for the temporally marginalized
process, we can look at fitting the estimate of the K-function to the theoretic K-func-
tions from both an LGCP and a Matérn cluster process as seen in Fig. 6.

Here we visually can see very little difference between the theoretic K-functions
and the border corrected estimates of the second-order-process. It would seem, in this
instance, that researchers could justify either process based upon fit to K-function.
Here, the Matérn cluster process would be more akin to the boosted event theory of
crime and the LGCP would be more like the flagged event theory. If, rather, we look
at spatio-temporal processes we see a similar phenomenon occur.
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Estimated K function fit to LGCP Estimated K function fit to Matern Cluster Process
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Fig. 6 Estimate of K-function from chicago data fit to both LGCP and a matérn cluster process

Next, we fit an LGCP, a spatio-temporal Hawkes process with an exponential
decay in time and a Gaussian spread in space for f2(-) and f1(-) respectively, as well
as a combined spatio-temporal Hawkes process with the addition of an LGCP. To fit
these processes we use Integrated Nested Laplace Approximation (INLA) [51]. To fit
the LGCP we create a gridded mesh following [21]. For more on mesh selection, see
Chapter 6 of [52]. All models were fit using the stelfi [S3] package in R.

The LGCP fitting function within the stelfi [53] package relies on the user input-
ting not only a spatial mesh as we discussed above but also a temporal mesh, which
we created using 10 knots. We placed diffused priors on each of the parameters and
the model took approximately 5 min to converge to parameter estimates.

The model fit here is

)‘(S’iv t) = eXp(ﬂ + Gt(sz) + 6)7 (7)

Where G¢(s;) is a Gaussian Markov Random Field (GMRF) defined on a grid as in
[21]. This is an approximation to a Matérn covariance function that takes two param-
eters, 7 and k, which sometimes are expressed as the range and standard deviation,

given by r = § and 0 = m. Temporal structure is assumed here through an

auto-regressive structure on the GMRF terms, Gy (s;) = pG¢—1(s) + €;. Here we are
choosing an AR(1) type of model as it is commonly used in time series and typically
offers an easy way to interpret p, however we note that this may not be the best model
as the ACF plot suggests only weak temporal structure.

In Table 1 we see extreme temporal structure with p near the edge of the parameter
space and some spatial structure as evident through the value of the range.

We next repeated this analysis assuming that the spatio-temporal spread was
driven through a Hawkes process. This model is given by

Asit) =p+a > fillls —sil) fat — ta), (8)

1T <t
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Table 1 Parameter estimates for

Parameter Estimate Standard error
a spatio temporal LGCP P 0.998 0.00125

8 —3.34 2.45

log(T) —5.66 0.106

log(k) 2.89 0.224

Range 0.158 0.0353

Standard Deviation 4.53 0.887
Ta.ble 2 Parameter estimates Parameter Estimate Standard error
with standard errors " 6.89 0.98

«a 0.013 0.002

B 0.015 0.003

To 0.011 0.0.001

Yo 0.0.011 0.0016

p —0.63 0.13

where f1(||s — s;||) is a multivariate Gaussian density with parameters (z,, ys, 0)
and fa(t — t;) is an exponential density with parameter 5. Here « is the self-excita-
tion parameter that yields the expected number of offspring from a given observation.
This model suggests that there is very little self-excitation as & = 0.013 in the data
and perhaps no repeat victimization (see Table 2). However, to demonstrate how con-
clusions can change if we consider combined models as outlined in Section 3.1, we
next repeated this by fitting a model that allows for both excitation as well as latent
Gaussian spatial spread. That is, a combined Hawkes and log Gaussian Cox process.
The model fit here is

Msint) =+ exp() +a 37 fillls = sill) fa(t — 8, )

1T <t

where f1(||s — s;||) is a multivariate Gaussian density with parameters (z,, y5, 0)
and fa(t — t;) is an exponential density with parameter 5. Here « is the self-excita-
tion parameter that yields the expected number of offspring from a given observation
and x and 7 control the spatial random effect term, ~y; in (9).

From the parameter estimates in Table 3, we can see that a conclusion from this
model might be that self-excitation is present in the data due to the value of the «
parameter, though the standard error may give us some concern. In Fig. 7 we overlay
the expectation with the observed counts and can see that around the 175-225 day
mark there may exist some times of increased excitation.

Any of the structures considered could be justified through the flagged events or
the boosted events theory or a combination of the two. As all fitting methods rely
on approximations, any model selection method outlined in Section 3.1 would be
problematic other than clearly stating the assumptions that went into the model. For
example, we could conclude that if repeat victimization is due to the flagged event
theory combined with the boosted event theory, then each event would, on average,
generate 0.21 additional events. However, we cannot tell, from the data and analysis

@ Springer



10 Page 16 of 20 La Matematica (2026) 5:10

Table 3 Parameter estimates Parameter Estimate Standard error
with standard errors P 103 4.40

«a 0.214 0.108

B 0.0505 0.175

To 0.00261 0.000798

Yo 0.00844 0.00256

p 0.974 0.0251

332 9.48
T 0.00673 0.00119
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Fig. 7 Plot of the intensity of the spatio-temporal Hawkes process over time compared to the observed
events

presented, whether this repeat victimization was instead due to underlying small-
scale spatial or temporal exogeneous factors.

An alternative approach to determining which is the ‘correct’ model may be to
employ a CNN as outlined above. Here we could follow the process outlined in Algo-
rithm 2. While this may yield a more satisfying conclusion, we do not attempt this
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here as we remain uncertain how the aggregation, the choice of architecture, or the
parameters estimated may impact the final results.

Algorithm 2 Algorithm applied to chicago data

1: for i =1 to 50 do

2: Simulate data from the spatio-temporal Hawkes process using parameter
estimates.

3 Aggregate data into a spatio-temporal grid.

4 Fit the aggregated data to an LGCP.

5 Simulate data from the LGCP.

6: end for

7: Combine the 50 sets of Hawkes process data and 50 sets of LGCP data.

8: Fit the combined data to a convolutional neural network.

9. Take original data, aggregate, and feed into the CNN.

10: return class probabilities.

5 Conclusions

In this manuscript, we argue that model selection is not only an important statistical
step in building out spatio-temporal models for crime or violence, it also is a socially
responsible step. While lately statistical models for crime have relied on using a
Hawkes process to justify the formulation of the model, we discuss that the Hawkes
process relies on the boosted theory of spatio-temporal clustering. We further discuss
how an alternatively theory, the flagged theory, would be more appropriately repre-
sented as a log Gaussian Cox process with a spatio-temporal covariance matrix.

While differentiating the two process is difficult, it is necessary to either attempt
to do so, or to explicitly state that the model is based off of an assumption about how
violence is spreading. While there are some potentially new methods of differentiat-
ing spatio-temporal point patterns using machine learning methods [54] it is unclear
whether such methods would work over the entire parameter space or what the uncer-
tainty in these methods would be.

Most importantly, we have discussed how improper or missing model selection
may impact marginalized communities and lead to incorrect conclusions about the
root cause of the spatio-temporal spread of violence. We continue to stress the impor-
tance of explicitly stating the modeling assumptions and ensuring that readers of
quantitative criminology are aware that the use of a Hawkes process, or self-exciting
spatio-temporal process, is built off of the assumption that repeat victimization is
driven by the boosted event theory and the presence of self-excitation in these models
does not confirm this assumption but rather is a result of it. We are excited about the
future of using advanced techniques to continue to differentiate these previous entan-
gled processes, however we currently urge caution in their application as techniques
such as model selection of point process data using convolutional neural networks is
still in its infancy.
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